Prx1 and 3.2kb Col1a1 promoters target distinct bone cell populations in transgenic mice.

نویسندگان

  • Zhufeng Ouyang
  • Zhijun Chen
  • Masakazu Ishikawa
  • Xiuzhen Yue
  • Aya Kawanami
  • Patrick Leahy
  • Edward M Greenfield
  • Shunichi Murakami
چکیده

Bones consist of a number of cell types including osteoblasts and their precursor cells at various stages of differentiation. To analyze cellular organization within the bone, we generated Col1a1CreER-DsRed transgenic mice that express, in osteoblasts, CreER and DsRed under the control of a mouse 3.2kb Col1a1 promoter. We further crossed Col1a1CreER-DsRed mice with Prx1CreER-GFP mice that express CreER and GFP in osteochondro progenitor cells under the control of a 2.4kb Prx1 promoter. Since the 3.2kb Col1a1 promoter becomes active in osteoblasts at early stages of differentiation, and Prx1CreER-GFP-expressing periosteal cells show endogenous Col1a1 expression, we expected to find a cell population in which both the 2.4kb Prx1 promoter and the 3.2kb Col1a1 promoter are active. However, our histological and flow cytometric analyses demonstrated that these transgenes are expressed in distinct cell populations. In the periosteum of long bones, Col1a1CreER-DsRed is expressed in the innermost layer directly lining the bone surface, while Prx1CreER-GFP-expressing cells are localized immediately outside of the Col1a1CreER-DsRed-expressing osteoblasts. In the calvaria, Prx1CreER-GFP-expressing cells are also localized in the cranial suture mesenchyme. Our experiments further showed that Col1a1CreER-DsRed-expressing cells lack chondrogenic potential, while the Prx1CreER-GFP-expressing cells show both chondrogenic and osteogenic potential. Our results indicate that Col1a1CreER-DsRed-expressing cells are committed osteoblasts, while Prx1CreER-GFP-expressing cells are osteochondro progenitor cells. The Prx1CreER-GFP and Col1a1CreER-DsRed transgenes will offer novel approaches for analyzing lineage commitment and early stages of osteoblast differentiation under physiologic and pathologic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smad7 Inhibits chondrocyte differentiation at multiple steps during endochondral bone formation and down-regulates p38 MAPK pathways.

Bone morphogenetic proteins (BMPs) play critical roles at various stages in endochondral bone formation. In vitro studies have demonstrated that Smad7 regulates transforming growth factor-beta and BMP signals by inhibiting Smad pathways in chondrocytes. However, the in vivo roles of Smad7 during cartilage development are unknown. To investigate distinct effects of Smad7 at different stages duri...

متن کامل

Transgenic Expression of Dentin Phosphoprotein Inhibits Skeletal Development

Dentin sialophosphoprotein (DSPP) is proteolytically processed into an NH2-terminal fragment called dentin sialoprotein (DSP) and a COOH-terminal fragment known as dentin phosphoprotein (DPP). These two fragments are believed to perform distinct roles in formation of bone and dentin. To investigate the functions of DPP in skeletal development, we generated transgenic mice to overexpress hemaggl...

متن کامل

Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice.

Mice bearing germ line mutations of p53 develop sarcomas at a significant rate. Since they are susceptible to a variety of other malignancies, they are not ideally suited to the study of sarcomas. To test the possibility that targeted mutation of tumor suppressor genes in early mesenchymal cells would induce formation of sarcomas, the Prx1-cre transgenic mouse was crossed to mice-bearing floxed...

متن کامل

Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss.

While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within pro...

متن کامل

Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice.

Runx2 is an essential transcription factor for bone and tooth development whose function in odontoblast differentiation remains to be clarified. To pursue this issue, we examined tooth development in Runx2 transgenic mice under the control of Col1a1 promoter (Tg(Col1a1-Runx2) mice). Endogenous Runx2 protein was detected in the nuclei of preodontoblasts, immature odontoblasts, mesenchymal cells ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره   شماره 

صفحات  -

تاریخ انتشار 2013